Unterrichtsmaterialien Mathematik: Klassenstufe 9
1109 MaterialienIn über 1109 Dokumenten und Arbeitsblättern für das Fach Mathematik: Klassenstufe 9 findest du schnell die passenden Inhalte für deine nächste Stunde. Jetzt kostenlos testen und mehr Materialien nach der Anmeldung entdecken!
Mehr Themen
Auswählen
Auswählen
Auswählen
Auswählen
1109 Materialien
Einheit
InformationPlädoyer für handelndes Erforschen und Üben im Mathematikunterricht: Nachdem bei Lernenden vermehrt Unsicherheiten im Umgang mit Bleistift, Lineal, Schere und Zirkel zu beobachten sind, dienen die Praxisbeiträge dazu, Material einzusetzen und durch händisches Arbeiten Lernen durch „Be-Greifen“ zu ermöglichen. Es motiviert die Lernenden, wenn sie geometrische Körper bauen und sie dazu nutzen, Körpereigenschaften zu untersuchen und die Zusammenhänge zwischen Netzen und Körpern zu erfahren: Körpernetze werden untersucht, Schrägbilder gezeichnet, Netze mit Schnüren zu Körpern geformt und Körper „platt“ gemacht, um im Netz bekannte Formen wiederzuentdecken. Grundflächen von Prismen werden gezeichnet und verglichen, Zylinder, Tetraeder und Pyramiden gebastelt und deren Oberflächen bzw. Volumen berechnet und Füllversuche durchgeführt. Mit Mandarinenschalen wird die Oberflächenformel der Kugel erarbeitet und mit Software zusammengesetzte Körper konstruiert – kurz: Vom Greifen zum Be-Greifen! Aus dem Inhalt: „Verstehen durch Anfassen“ – Handelnder Umgang mit geometrischen Körpern; „Mit Klickies vom Netz zum Körper“ – Ideen zu Würfel, Pyramide und Co. entwickeln, umsetzen und untersuchen; „Schräge Würfel“ – Perspektivische Darstellungen mithilfe von Minecraft üben; „Pop-up-Geometrie“ – Vom Netz zum Körper mit Schnürzugmodellen; „Vom Stern zum Würfel“ – Mit Oberflächeninhalten rechnen; „Es kommt auf die Grundfläche an!“ – Das Volumen von Buchstabenprismen vergleichen; „Volumengleiche Zylinder“ – Den Zusammenhang zwischen Radius und Höhe handelnd und rechnend erfahren; „Wie groß ist die Mandarine?“ – Den Oberflächenterm der Kugel handelnd entdecken; „Wenn du sauber gefaltet hast ...“ – Ein Tetraeder basteln und typische Größen berechnen; „Pyramidenwürfel: Wie oft passt ...?“ – Handlungsorientiert zum Volumen; „3D-Modelle: digital und analog“ – Vielfalt individueller geometrischer Körper durch neue technische Möglichkeiten; „Räumliches Denken fördern“ – Ein digitales Werkzeug zur Diagnose und Förderung von räumlichem Denken; „Mit Kinderrechten in die Zukunft“ – Weltkindertag am 20. September; „Xperium in St. Englmar“ – Das mathematische Mitmachmuseum: Lass es mich tun ...!; „Körperberechnungen – Begreifen durch Begreifen“ – Rezension; Arbeitsblätter und Bastelvorlagen zu den Beiträgen im Heft; 12 Karteikarten für den Unterricht zum Beitrag „Pyramidenvolumen“; 6 GeoGebra-Dateien als Hilfsmittel zum Beitrag „Pyramidenvolumen“.
Testen kostet nichts
Probiere meinUnterricht 14 Tage lang aus. Kündigst du während deiner Probezeit, entstehen für dich keine Kosten. 🚀
Einheit
EinführungPlädoyer für handelndes Erforschen und Üben im Mathematikunterricht: Nachdem bei Lernenden vermehrt Unsicherheiten im Umgang mit Bleistift, Lineal, Schere und Zirkel zu beobachten sind, dienen die Praxisbeiträge dazu, Material einzusetzen und durch händisches Arbeiten Lernen durch „Be-Greifen“ zu ermöglichen. Es motiviert die Lernenden, wenn sie geometrische Körper bauen und sie dazu nutzen, Körpereigenschaften zu untersuchen und die Zusammenhänge zwischen Netzen und Körpern zu erfahren: Körpernetze werden untersucht, Schrägbilder gezeichnet, Netze mit Schnüren zu Körpern geformt und Körper „platt“ gemacht, um im Netz bekannte Formen wiederzuentdecken. Grundflächen von Prismen werden gezeichnet und verglichen, Zylinder, Tetraeder und Pyramiden gebastelt und deren Oberflächen bzw. Volumen berechnet und Füllversuche durchgeführt. Mit Mandarinenschalen wird die Oberflächenformel der Kugel erarbeitet und mit Software zusammengesetzte Körper konstruiert – kurz: Vom Greifen zum Be-Greifen! Aus dem Inhalt: „Verstehen durch Anfassen“ – Handelnder Umgang mit geometrischen Körpern; „Mit Klickies vom Netz zum Körper“ – Ideen zu Würfel, Pyramide und Co. entwickeln, umsetzen und untersuchen; „Schräge Würfel“ – Perspektivische Darstellungen mithilfe von Minecraft üben; „Pop-up-Geometrie“ – Vom Netz zum Körper mit Schnürzugmodellen; „Vom Stern zum Würfel“ – Mit Oberflächeninhalten rechnen; „Es kommt auf die Grundfläche an!“ – Das Volumen von Buchstabenprismen vergleichen; „Volumengleiche Zylinder“ – Den Zusammenhang zwischen Radius und Höhe handelnd und rechnend erfahren; „Wie groß ist die Mandarine?“ – Den Oberflächenterm der Kugel handelnd entdecken; „Wenn du sauber gefaltet hast ...“ – Ein Tetraeder basteln und typische Größen berechnen; „Pyramidenwürfel: Wie oft passt ...?“ – Handlungsorientiert zum Volumen; „3D-Modelle: digital und analog“ – Vielfalt individueller geometrischer Körper durch neue technische Möglichkeiten; „Räumliches Denken fördern“ – Ein digitales Werkzeug zur Diagnose und Förderung von räumlichem Denken; „Mit Kinderrechten in die Zukunft“ – Weltkindertag am 20. September; „Xperium in St. Englmar“ – Das mathematische Mitmachmuseum: Lass es mich tun ...!; „Körperberechnungen – Begreifen durch Begreifen“ – Rezension; Arbeitsblätter und Bastelvorlagen zu den Beiträgen im Heft; 12 Karteikarten für den Unterricht zum Beitrag „Pyramidenvolumen“; 6 GeoGebra-Dateien als Hilfsmittel zum Beitrag „Pyramidenvolumen“.
Einheit
Kreisbogenzweiecke mit festem Radius – eine Problemlöseaktivität mit KreisschablonenIn den meisten Fällen wird man Kreise wohl mit dem Zirkel zeichnen. Das ist auch ziemlich klar, weil Zirkel leicht verstellbar sind und man damit Kreise mit „beliebigen“ Radien realisieren kann. Aber wenn man viele Kreise mit gleichem (festem) Radius zeichnen soll, dann kann alternativ auch eine Kreisschablone (Holz, Metall, Plastik, etc.) benutzt werden. Nicht nur aus Gründen der Abwechslung ist dies bei der folgenden Aktivität angebracht, sondern auch deswegen, weil man mit einem Zirkel und auch mit einer Dynamischen Geometrie Software (DGS) zuerst einmal die zugehörigen Mittelpunkte der Kreise konstruieren müsste, und das dauerte doch deutlich länger. Mit einer Kreisschablone können die in Rede stehenden Kreise deutlich schneller bzw. effizienter gezeichnet werden.
Einheit
ÄhnlichkeitÄhnlichkeit; Zentrische Streckung; Massstab; Vergrössern und Verkleinern; Strahlensätze; Ge(o)mixtes 5
Verwandte Themen
Einheit
ÄhnlichkeitErster Strahlensatz; Erster Strahlensatz – Anwendungen; Zweiter Strahlensatz; Zweiter Strahlensatz – Anwendungen
video
Informationsfilm: Ähnlichkeit und zentrische StreckungenDie SuS rezipieren ein Video zur Figur Dreieck. Ähnlichkeit besteht zwischen zwei Dreiecken, wenn ihre Winkel gleich groß sind und ihre Seiten im gleichen Größenverhältnis stehen. Der Film demonstriert, wie man ein Dreieck im Koordinatensystem vergrößert oder verkleinert, und erklärt den Einfluss der zentrischen Streckung auf die gegenständliche Malerei.
Einheit
Raum und Form (Geometrie)Winkel; Figuren; Körper; Ähnlichkeit; Satzgruppe des Pythagoras; Trigonometrie
Testen kostet nichts
Probiere meinUnterricht 14 Tage lang aus. Kündigst du während deiner
Probezeit, entstehen für dich keine Kosten. 🚀
Probezeit, entstehen für dich keine Kosten. 🚀