Unterrichtsmaterialien Mathematik
3228 MaterialienIn über 3228 Dokumenten und Arbeitsblättern für das Fach Mathematik findest du schnell die passenden Inhalte für deine nächste Stunde. Jetzt kostenlos testen und mehr Materialien nach der Anmeldung entdecken!
Auswählen
Auswählen
Auswählen
Auswählen
3228 Materialien
Einheit
Quadrate und SchnittpunkteAusgehend von einem speziellen Schnittpunkt in der Beweisfigur des EUKLID zum Satz von PYTHAGORAS finden wir zusätzliche Quadrate und spezielle Schnittpunkte. Für die Beweise arbeiten wir hauptsächlich mit der Ähnlichkeit.
Testen kostet nichts
Probiere meinUnterricht 14 Tage lang aus. Kündigst du während deiner Probezeit, entstehen für dich keine Kosten. 🚀
Einheit
„Zusammen haben wir den Beweis gezeichnet“Mithilfe der Methode des Gruppenpuzzles erforschen die Kinder eines dritten Schuljahres multiplikative Entdeckerpäckchen und entwickeln Möglichkeiten, die Allgemeingültigkeit ihrer Entdeckung darzustellen.
Einheit
Flachfaltbarkeit: Mathematik mit eigenen Händen schaffenOrigami oder Papierfalten (jap.: oru – falten, kami – Papier) begegnet uns in vielen alltäglichen Situationen: als Briefkuvert, Weihnachtsstern oder Papierflieger. Auch Mathematik begegnet uns vielfach in der Umwelt: in Form von Zahlen, geometrischen Formen. Selbst wenn wir sie nicht wahrnehmen, ist Mathematik da – zum Beispiel bei der Ampelsteuerung, im GPS und bei digitalen Verschlüsselungen. Seltener sehen wir eine Kombination von Mathematik und Papierfalten: etwa diverse DIN-A-Formen, die nach Halbieren wieder eine DIN-A-Form haben, gefaltete Papiereinkaufstüten, ideenreiche Versandpakete. Im Mathematikunterricht spielt Papierfalten jedoch üblicherweise nur insofern eine Rolle, als dort schöne Objekte oder Visualisierungen bekannter Sätze (PYTHAGORAS, Schnittpunkt der Winkelhalbierenden im Dreieck, Papierstreifenknoten) gefaltet werden. Darüber hinaus birgt Papierfalten allerdings ein hohes mathematisches Potenzial, sodass es schade ist, es lediglich als ein Visualisierungswerkzeug zu benutzen. Wir wollen in diesem Beitrag am Beispiel der sog. Flachfaltbarkeit aufzeigen, wie eine mathematische Theorie quasi mit eigenen Händen erschaffen werden kann. Die Flachfaltbarkeit ist durch die Frage „Kann ein vorgegebenes Faltmuster zu einer flachen Figur gefaltet werden?“ charakterisiert. Dieser Beitrag ist eine verkürzte und veränderte Version von [NEDRENCO, BECK 2016]. Dort sind einige Beweise und vertiefende Erklärungen zu finden.
Einheit
LS 03 Was zu beweisen wäre!In dieser Lernspirale lernen die SuS zwei konkrete Beweise zum Satz von Pythagoras kennen.
video
SinusDer persische Mathematiker und Astronom Abu l-Wafa entdeckte und beschrieb im 10. Jahrhundert in der Trigonometrie den Zusammenhang zwischen einer Seite und dem ihr gegenüberliegenden Winkel. Die Sinusfunktion, eine elementare Funktion der Mathematik, beschreibt das Verhältnis der Gegenkathete zur Hypotenuse in Abhängigkeit vom Winkel. Der Film leitet in einem ersten Teil die Sinusfunktion her und führt die Beweise. In einem zweiten Teil wird das Wissen in animierten Aufgaben angewandt und vertieft. Zusatzmaterial: 62 Arbeitsblätter in Schüler- und Lehrerfassung; 18 Testaufgaben; 10 interaktive Arbeitsblätter; 5 MasterTool-Folien.
Einheit
Mathematische VerallgemeinerungenDie SuS werden durch das aktive Erkunden von mathematischen Mustern und Strukturen zum Prinzip der vollständigen Induktion hingeführt. Sie benutzen Strategien, um hohe Dreieckszahlen zu bestimmen und finden Muster in Zahlenfolgen.
Einheit
Satz des PythagorasStation 1: Begriffe zum Dreieck; Station 2: Dreiecke aus Quadraten legen; Station 3: Satz des Pythagoras – Puzzle; Station 4: Beweise; Station 5: Rechnen mit Pythagoras I; Station 6: Rechnen mit Pythagoras II; Station 7: Pythagoras im Koordinatensystem; Station 8: Pythagoreische Tripel – Knoten-Seile; Station 9: Pythagoreische Tripel – Domino; Station 10: Pythagoras verkehrt herum; Station 11: Pythagoras in ebenen Figuren; Station 12: Pythagoras im Raum; Station 13: Pythagoras am Computer; Lernzielkontrolle: Satz des Pythagoras
Testen kostet nichts
Probiere meinUnterricht 14 Tage lang aus. Kündigst du während deiner
Probezeit, entstehen für dich keine Kosten. 🚀
Probezeit, entstehen für dich keine Kosten. 🚀